Buckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
Authors
Abstract:
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that orthogonal polynomials yield superior results for the lower modes. Also, the overall CPU time consumed to perform the calculations by the two different procedures for constructing the approximating functions showed that orthogonal polynomials are computationally more time efficient. A novel approach is devised for the construction of characteristic beam functions for buckling and vibration analysis of an angle ply symmetric laminated composite plate. Numerical results are presented and discussed
similar resources
Buckling and Free Vibration Analysis of Fiber Metal-laminated Plates Resting on Partial Elastic Foundation
This research presents, buckling and free vibration analysis of fiber metal-laminated (FML) plates on a total and partial elastic foundation using the generalized differential quadrature method (GDQM). The partial foundation consists of multi-section Winkler and Pasternak type elastic foundation. Taking into consideration the first-order shear deformation theory (FSDT), FML plate is modeled and...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textMy Resources
Journal title
volume 6 issue 2
pages 115- 120
publication date 2630-07-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023